Networks that learn

Lecture 23
by Marina Barsky

An idea is inspired by the science of the brain

How computer works

How brain works: neurons

Neuron is an electrically excitable cell that processes and transmits information by electrical and chemical signaling.

Mathematical model of a neuron (McCulloch and Pitt, 1943)

Input neurons (x)

Input "neurons"

Input vector (x)

- An input vector \mathbf{x} is the data given as one input to the processing "neuron" (corresponds to afferent neurons that transmit information to the brain).

How real neurons communicate

- The signal is transmitted to other neurons through synapses.
- The physical and neurochemical characteristics of each synapse determine the strength and polarity of the new input signal.
- This is where the brain is the most flexible: neuroplasticity.

Real neurons: signal summation

- Dendrite(s) receive an electric charge.
- The strengths of all the received charges are added together (spatial and temporal summation).
- The aggregate value is then passed to the soma (cell body) to axon hillock.

Real neurons: activation threshold

- If the aggregate input is greater than the axon hillock's threshold value, then the neuron fires, and an output signal is transmitted down the axon.

Real neurons: the output signal is constant

- The strength of the output is constant, regardless of whether the input was just above the threshold, or a hundred times as great.
- This uniformity is critical in an analogue device such as a brain where small errors can snowball, and where error correction is more difficult.

Modeling brain with networks

- The complicated biological phenomena may be modeled by a very simple model: nodes model neurons and edges model connections.
- The input nodes each have a weight that they contribute to the neuron, if the input is active. This corresponds to the strength of a synaptic connection.

Model: signal strength (weights)

Input vector (x)

- Weights w_{i}, are the weighted connections between input neurons and the processing neuron (these weights model the strength of synaptic connections in the brain).

Model: processing "neuron" signal summation

Input vector (x)

- The summation function IN sums all the signals from the input vector multiplied by weights, and feeds the result into activation function g.

Model: output "neuron"

- The output \mathbf{y}, shows the resulting action of processing neuron: neuron fires(1) or not(0).
- We can write $\mathbf{y}(\mathbf{x}, \mathrm{W})$ to remind that the output depends on the inputs to the algorithm and the current set of weights of the network.

Model: activation threshold

Input vector (x)

- The activation function $g(\cdot)$ is a mathematical function that describes the firing of the neuron as a response to the weighted inputs.
- As in real brain, this is a threshold function: neuron either fires, or not.

Simple threshold: sign

Input vector (x)

The simplest threshold function: sign
$g(x)=0$ if $x<=0$
$g(x)=1$ if ($x>0$) (neuron fires)

Model: the goal - predict y

Processing:

- The model can be used to predict a target variable y given input vector x .
- Each input dimension (attribute) can be considered a separate input "neuron"
- Processing happens in the "axon" and based on the result the output neuron "fires" (or not)

Model: multiple predictions

- Conceptually there is no difference between input and output neurons
- So the same input vector can be used to activate multiple output "neurons", using a different set of weights

Let's build some neural networks

Networks that know the meaning of lights

Predicting smiles

- We record people's reaction to lights into a table (dataset)
- Can we set up a single network which when presented with a combination of lights will correctly predict if a person will smile?
- Setting up the network means labeling the edges with correct weights

Bias node

- When we are presenting the network with combination $[0,0]$ - then the weights do not matter: the data vector $[0,0]$ is ignored by the network
- To prevent this information loss, we add to the input a special bias node which always has a constant value, and we assign to it weight b

red	orange	smile
	pos	

Neetwork that predicts smiles

Assigning sample weights

red	orange	smile
\square	neg	
		pos
		pos

x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	1

Network that predicts smiles

Checking correctness of predictions

x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	1

Predicting two outputs

red	orange	smile
	pos	pos

red	orange	stop
	neg	
	neg	neg

There is no conceptual difference between input and output nodes

Predicting both smiles and stops

Assigning sample weights for y_{1}

> We already know that this
> prediction is correct:
> $\mathrm{y}_{1}([0,0])=-0.5(-)$
> $\mathrm{y}_{1}[[0,1])=1-0.5=0.5(+)$
> $\mathrm{y}_{1}([1,0])=1-0.5=0.5(+)$
> $\mathrm{y}_{1}([1,1])=2-0.5=1.5(+)$

red	orange	smile
	pos	pos

red	orange	stop
	neg	
	neg	neg

Predicting both smiles and stops

Assigning sample weights for y_{2}

> We already know that this
> prediction is correct:
> $\mathrm{y}_{1}([0,0])=-0.5(-)$
> $\mathrm{y}_{1}([0,1])=1-0.5=0.5(+)$
> $\mathrm{y}_{1}([1,0])=1-0.5=0.5(+)$
> $\mathrm{y}_{1}([1,1])=2-0.5=1.5(+)$

red	orange	smile
	pos	pos

Predicting both smiles and stops

Checking y_{2}

red	orange	smile
	neg	pos

$$
\begin{aligned}
& \mathrm{y}_{1}([0,0])=-0.5(-) \\
& \mathrm{y}_{1}([0,1])=1-0.5=0.5(+) \\
& \mathrm{y}_{1}([1,0])=1-0.5=0.5(+) \\
& \mathrm{y}_{1}([1,1])=2-0.5=1.5(+)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y}_{2}([0,0])=-1.5(-) \\
& \mathrm{y}_{2}([0,1])=1-1.5=-0.5(-) \\
& \mathrm{y}_{2}([1,0])=1-1.5=-0.5(-) \\
& \mathrm{y}_{2}([1,1])=2-1.5=0.5(+)
\end{aligned}
$$

We have built the system that recognizes OR and AND

Apply sign function to the output

Truth table for OR

x_{1}	x_{2}	y_{1}
0	0	0
0	1	1
1	0	1
1	1	1

Truth table for AND

x_{1}	x_{2}	y_{1}
0	0	0
0	1	0
1	0	0
1	1	1

Can we build a system that recognizes: x_{1} AND NOT x_{2} ?

Truth table for AND NOT

x_{1}	x_{2}	y
0	0	0
0	1	0
1	0	1
1	1	0

System that recognizes: x_{1} AND NOT x_{2}

Truth table for AND NOT

x_{1}	x_{2}	y
0	0	0
0	1	0
1	0	1
1	1	0

System that recognizes: x_{1} AND NOT x_{2}

Truth table for AND NOT

x_{1}	x_{2}	y
0	0	0
0	1	0
1	0	1
1	1	0

$$
\begin{aligned}
& y([0,0])=\operatorname{sign}(-0.5)=0 \\
& y([0,1])=\operatorname{sign}(0-1-0.5)=0 \\
& y([1,0])=\operatorname{sign}(1+0-0.5)=1 \\
& y([1,1])=\operatorname{sign}(1-1-0.5)=0
\end{aligned}
$$

How about:
 NOT (x_{1} AND x_{2})

Truth table for NOT AND

x_{1}	x_{2}	y
0	0	1
0	1	1
1	0	1
1	1	0

System that recognizes: NOT (x_{1} AND x_{2})

Truth table for NOT AND

x_{1}	x_{2}	y
0	0	1
0	1	1
1	0	1
1	1	0

$$
\begin{aligned}
& y([0,0])=\operatorname{sign}(1.5)=1 \\
& y([0,1])=\operatorname{sign}(-1+1.5)=1 \\
& y([1,0])=\operatorname{sign}(-1+1.5)=1 \\
& y([1,1])=\operatorname{sign}(-2+1.5)=0
\end{aligned}
$$

Our network is able to recognize linearly-separable binary classes

Why it works

- The network assumes that there is a linear correlation between the input vector \mathbf{x} and the output y
- We just need to discover the equation of the separating line (hyperplane) $y=w \mathbf{x}+b$, which expresses this linear correlation

Can machines learn the network for a given problem automatically?

Yes, by looking at the labeled dataset (supervised learning)

Predict \rightarrow Compare \rightarrow Learn from errors

Neuron with learning capabilities: Perceptron (Rosenblatt, 1958)

- The network can learn its own weights
- It is presented with a set of inputs and known outputs
- Originally the predicted output is different from the actual output by some error
- We adjust the connection weights to produce a smaller error

Most basic Perceptron

Adjusting the weights with gradient descent: error

Objective error function - in this case:
$E=1 / 2(y-t)^{2}$

The error depends on weight
where $y=w^{*} x$ (predicted value), and t is the actual value of y, known from the labeled dataset
$\partial E / \partial y=1 / 2 * 2(y-t)=y-t$

Adjusting the weights with gradient descent: derivative

$E=1 / 2(y-t)^{2}$
$y=w^{*} x$

The error depends on weight
$\partial E / \partial y=y-t$
To determine how to change weight w take derivative of E at point w
$\Delta=\partial E / \partial w=\partial E / \partial y^{*} \partial y / \partial w=\left(w^{*} x-t\right)^{*} x$

$$
\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}
$$

Chain rule!
If derivative is positive (function on the rise) we need to decrease the weight, if it is negative - we need to increase the weight

Adjusting the weights with gradient descent: delta rule

$E=1 / 2(y-t)^{2}$
$y=w^{*} x$

The error depends on weight
$\partial E / \partial y=y-t$
$\Delta=\partial E / \partial \mathrm{w}=\left(\mathrm{w}^{*} \mathrm{x}-\mathrm{t}\right)^{*} \mathrm{x}$

Delta rule: adjust weight w by Δ

$$
\mathrm{w}=\mathrm{w}-\partial \mathrm{E} / \partial \mathrm{w}=\mathrm{w}-\Delta=\mathrm{w}-\left(\mathrm{w}^{*} \mathrm{x}-\mathrm{t}\right)^{*} \mathrm{x}
$$

More input dimensions - more weights to adjust

The network transforms input feature vector into target using two weights

The principle is the same:
$\mathrm{E}=1 / 2\left(\mathrm{w}_{1}{ }^{*} \mathrm{x}_{1}+\mathrm{w}_{2}{ }^{*} \mathrm{x}_{2}-\mathrm{t}\right)^{2}$
Which weight contributed more to the error?
Partial derivatives with respect to each weight:
$\partial E / \partial w_{1}=\left(w_{1}{ }^{*} x_{1}-t\right)^{*} x_{1}$
$\partial E / \partial w_{2}=\left(w_{2}^{*} x_{2}-t\right)^{*} x_{2}$
Delta rules: update weights
$w_{1}=w_{1}-\partial E / \partial w_{1}$
$w_{2}=w_{2}-\partial E / \partial w_{2}$

There is also a bias node, of course

Objective function: $\mathrm{E}=1 / 2\left(\mathrm{w}_{1}{ }^{*} \mathrm{x}_{1}+\mathrm{w}_{2}{ }^{*} \mathrm{x}_{2}+\mathrm{b}-\mathrm{t}\right)^{2}$
$\partial E / \partial w_{1}=\left(w_{1}{ }^{*} x_{1}-t\right){ }^{*} x_{1}$
$\partial E / \partial w_{2}=\left(w_{2}{ }^{*} x_{2}-t\right)^{*} x_{2}$
$\partial E / \partial b=\left(b^{*} c-t\right)^{*} c$

Delta rule:
$w_{1}=w_{1}-\partial E / \partial w_{1}$

$w_{2}=w_{2}-\partial E / \partial w_{2}$
$b=b-\partial E / \partial b$

Incorporating learning rate η (eta)

$w_{1}=w_{1}-\eta * \partial E / \partial w_{1}$
$w_{2}=w_{2}-\eta * \partial E / \partial w_{2}$
b $=\mathrm{b}-\eta^{*} \partial \mathrm{E} / \partial \mathrm{b}$
where:
$\partial \mathrm{E} / \partial \mathrm{w}_{1}=\left(\mathrm{w}_{1}{ }^{*} \mathrm{x}_{1}-\mathrm{t}\right)^{*} \mathrm{x}_{1}$
$\partial E / \partial w_{2}=\left(w_{2}{ }^{*} x_{2}-t\right)^{*} x_{2}$
$\partial E / \partial b=(c b-t)^{*} c$

Experiment with basic perceptron

 here
Let's try to build a perceptron that recognizes XOR

Truth table for XOR

x_{1}	x_{2}	0
0	0	0
0	1	1
1	0	1
1	1	0

Let's try to build a perceptron that recognizes XOR

Truth table for XOR

x_{1}	x_{2}	0
0	0	0
0	1	1
1	0	1
1	1	0

We can't!

This failure caused a major delay in developing the idea of ANN in the 60s

Idea:
express XOR through known solutions
$x_{1} \operatorname{XOR} x_{2}=\left(x_{1}\right.$ OR $\left.x_{2}\right) \operatorname{AND}\left(\operatorname{NOT}\left(x_{1} \operatorname{AND} x_{2}\right)\right)$

Add more layers x_{1} XOR $x_{2}=\left(x_{1}\right.$ OR $\left.x_{2}\right) \operatorname{AND}\left(\operatorname{NOT}\left(x_{1}\right.\right.$ AND $\left.\left.x_{2}\right)\right)$

Truth table for XOR

x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	0

$\mathrm{y}([0,0])=(-) \rightarrow 0$
$y([0,1])=(+) \rightarrow 1$
$\mathrm{y}([1,0])=(+) \rightarrow 1$
$\mathrm{y}([1,1])=(-) \rightarrow 0$

```
h
h}\mp@subsup{h}{2}{}([0,0])=1.5(+
hil
h}([[1,1])=2-0.5=1.5(+)->1\quad\mp@subsup{h}{2}{}([1,1])=-2+1.5=-0.5(-) ->
```


Importance of nonlinearity!

$x_{1} \operatorname{XOR} x_{2}=\left(x_{1}\right.$ OR $\left.x_{2}\right) \operatorname{AND}\left(\operatorname{NOT}\left(x_{1} \operatorname{AND} x_{2}\right)\right)$

Truth table for XOR

$$
\begin{array}{ll}
\mathrm{h}_{1}([0,0])=-0.5(-) & \rightarrow 0 \\
\mathrm{~h}_{1}([0,1])=1-0.5=0.5(+) & \rightarrow 1 \\
\mathrm{~h}_{1}([1,0])=1-0.5=0.5(+) & \rightarrow 1 \\
\mathrm{~h}_{1}([1,1])=2-0.5=1.5(+) & \rightarrow 1
\end{array}
$$

$$
\begin{aligned}
& \mathrm{h}_{2}([0,0])=1.5(+) \\
& \mathrm{h}_{2}([0,1])=-1+1.5=0.5(+) \\
& \mathrm{h}_{2}([1,0])=-1+1.5=0.5(+) \\
& \mathrm{h}_{2}([1,1])=-2+1.5=-0.5(-)
\end{aligned}
$$

$$
\rightarrow 1
$$

$$
y([0,0])=(-) \rightarrow 0
$$

$\rightarrow 1$
$y([0,1])=(+) \rightarrow 1$
$\rightarrow 1 \quad \mathrm{y}([1,0])=(+) \rightarrow 1$
$\rightarrow 0 \quad \mathrm{y}([1,1])=(-) \rightarrow 0$

Conclusion: neurons can be combined into multiple layers to create complex shapes from linear boundaries

XOR

Multi-layer Perceptron (MLP)

- Added: hidden nodes
- Organized nodes into layers. Edges are directed and carry weight
- No connections inside the layer!

Multi-layer Perceptron: learning

Objective of learning - did not change: determine the optimal values of weights to separate all labeled instances by a hyperplane

MLP: learning optimal weights

Because we need derivatives: instead of sign - use more complex nonlinear functions: sigmoidal functions

MLP: learning optimal weights

Because we need derivatives: instead of sign - use more complex nonlinear functions: sigmoidal functions

Non-linear activation functions

Logistic function (sigmoid)

$$
g(h)=\frac{1}{1+e^{-2 \beta h}},
$$ where $\boldsymbol{\beta}$ is a positive constant (we generally use $2 \boldsymbol{\beta}=1$ obtaining a standard logistic function)

Sigmoid gives a value in range from 0 to 1.
Note: when $I N=0, f=0.5$
We consider all values >0 as positive predictions

Alternatively can use tanh:
$\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{e^{2 x}-1}{e^{2 x}+1}$
which has the same shape as sigmoid but in range -1 to 1 .

More recently - rectified linear units (ReLU): $f(x)=x^{+}=\max (0, x)$
This function is 0 for negative argument values, and some units will yield activations 0 , making networks sparse. Moreover, the gradient is particularly simple-either 0 or 1.

MLP learning algorithm

Training the MLP consists of two parts:

- Working out what the outputs are for the given inputs and the current weights - Forward phase
- Updating the weights according to the error, which is a function of the difference between the outputs and the targets - Backward phase

Forward: prediction

Forward phase:

1. input-to-hidden layer: summation

$$
\begin{aligned}
& \mathrm{h}_{1}=\mathrm{w}_{1}^{*} \mathrm{x}_{1}+\mathrm{w}_{2}^{*} \mathrm{x}_{2}+\mathrm{b}_{1} \\
& \mathrm{~h}_{2}=\mathrm{w}_{3}^{*} \mathrm{x}_{1}+\mathrm{w}_{4}^{*} \mathrm{x}_{2}+\mathrm{b}_{2}
\end{aligned}
$$

Forward phase:

2. input-to-hidden layer: activation

$\mathrm{h}_{1}=\mathrm{w}_{1}{ }^{*} \mathrm{x}_{1}+\mathrm{w}_{2}{ }^{*} \mathrm{x}_{2}+\mathrm{b}_{1}$
$\mathrm{h}_{2}=\mathrm{w}_{3}{ }^{*} \mathrm{x}_{1}+\mathrm{w}_{4}{ }^{*} \mathrm{x}_{2}+\mathrm{b}_{2}$
$g_{1}=\sigma\left(h_{1}\right)$
$g_{2}=\sigma\left(h_{2}\right)$

Forward phase:

3. hidden-to-output layer: prediction

$$
\begin{aligned}
& h_{1}=w_{1}^{*} x_{1}+w_{2}^{*} x_{2}+b_{1} \\
& h_{2}=w_{3}^{*} x_{1}+w_{4}^{*} x_{2}+b_{2} \\
& g_{1}=\sigma\left(h_{1}\right) \\
& g_{2}=\sigma\left(h_{2}\right) \\
& y=g_{1}{ }^{*} w_{5}+g_{2}{ }^{*} w_{6}+b_{3}
\end{aligned}
$$

Step-by-step example

 initialize weights at random

The input vector $\mathrm{x}=[1,4]$, and the actual output $\mathrm{t}=0.1$

Step-by-step example 1. input to hidden layer: summation

$$
\begin{aligned}
& h_{1}=w_{1}^{*} x_{1}+w_{2}^{*} x_{2}+b_{1}=0.5+0.1 * 1+0.2 * 4=1.4 \\
& h_{2}=w_{3}^{*} x_{1}+w_{4}^{*} x_{2}+b_{2}=0.5+0.3 * 1+0.4 * 4=2.4
\end{aligned}
$$

Step-by-step example

 2. input to hidden layer: activation
$h_{1}=1.4$
$h_{2}=2.4$
$\mathrm{g}_{1}=\sigma\left(\mathrm{h}_{1}\right)=0.8021838885585817481543 \approx 0.80$
$\mathrm{g}_{2}=\sigma\left(\mathrm{h}_{2}\right)=0.9168273035060776293371 \approx 0.92$

Step-by-step example

 3. hidden-to-output layer: prediction
$h_{1}=1.4$
$h_{2}=2.4$
$\mathrm{g}_{1}=0.80$
$\mathrm{g}_{2}=0.91$
$y=g_{1}{ }^{*} w_{5}+g_{2}{ }^{*} w_{6}+b_{3}=0.80 * 0.5+0.92 * 0.6+0.5 \approx 1.45$

Step-by-step example compute error

$h_{1}=1.4$
$h_{2}=2.4$
$\mathrm{g}_{1}=0.80$
$\mathrm{g}_{2}=0.91$
$y=1.45$
$E=1 / 2(1.45-0.1)^{2}=0.845$
Error directly depends on the weights w_{5}, w_{6}, and b_{3}
$E=1 / 2\left(0.80 * w_{5}+0.92 w_{6}+b_{3}-0.1\right)^{2}$
We try to make it smaller by simultaneously adjusting $\mathrm{w}_{5}, \mathrm{w}_{6}$, and b_{3}

Backward phase:

4. output-to-hidden weight updates

$$
\begin{aligned}
& \mathrm{E}=1 / 2(\mathrm{y}-\mathrm{t})^{2} \\
& \mathrm{y}=\mathrm{g}_{1}{ }^{*} w_{5}+\mathrm{g}_{2}{ }^{*} w_{6}+b_{3}
\end{aligned}
$$

To find how to update w_{5}, w_{6}, and b_{3}
Partial derivatives:

$$
\begin{aligned}
& \partial E / \partial w_{5}=\partial E / \partial y^{*} \partial y / \partial w_{5}=(y-t)^{*} g_{1} \\
& \partial E / \partial w_{6}=(y-t)^{*} g_{2} \\
& \partial E / \partial b_{3}=(y-t)^{*} 1
\end{aligned}
$$

Step-by-step example 4. output-to-hidden weight updates

$y=1.45$
This tells us how much to update w_{5}, w_{6}, and b_{3}

Step-by-step example 4. output-to-hidden weight updates

$h_{1}=1.4$
$h_{2}=2.4$
$\mathrm{g}_{1}=0.80$
$\mathrm{g}_{2}=0.91$
$y=1.45$

Update weights $\boldsymbol{\eta}=0.1$:
$\partial E / \partial w_{5}=1.08$
$\partial E / \partial w_{6}=1.24$
\Longrightarrow
$w_{5}=0.5-1.08 * 0.1=0.39$
$w_{6}=0.6-1.24 * 0.1=0.48$
$b_{3}=0.5-1.35 * 0.1=0.37$

Step-by-step example 4. output-to-hidden weight updates

$h_{1}=1.4$
$h_{2}=2.4$
$\mathrm{g}_{1}=0.80$
$\mathrm{g}_{2}=0.91$
$y=1.45$

Update weights $\boldsymbol{\eta}=0.1$:
$\partial E / \partial w_{5}=1.08$
$\partial E / \partial w_{6}=1.24$
\Longrightarrow
$\mathrm{w}_{5}=0.5-1.08 * 0.1=0.39$
$w_{6}=0.6-1.24 * 0.1=0.48$
$b_{3}=0.5-1.35^{*} 0.1=0.37$

Note that this step is exactly the same as in a single-layer perceptron!

Backward phase:

5. hidden-to-output weight updates

Error function E indirectly depends on $w_{1}, w_{2}, w_{3}, w_{4}, b_{1}, b_{2}$
To find the contribution of each variable: partial derivatives
For example:
$\partial E / \partial w_{1}=\partial E / \partial y^{*} \partial y / \partial g_{1} * \partial g_{1} / \partial w_{1}$

$$
\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}
$$

Chain rule!

Backward phase:

5. hidden-to-output weight updates

Computing delta for w_{1}
$\partial E / \partial w_{1}=\partial E / \partial y * \partial y / \partial g_{1}{ }^{*} \partial g_{1} / \partial w_{1}$
$E(y)=1 / 2(y-t)^{2}$
\rightarrow
$y\left(g_{1}\right)=g_{1}{ }^{*} w_{5}+g_{2}{ }^{*} w_{6}+b_{3} \rightarrow$
$\partial E / \partial y=y-t$
$\partial y / \partial g_{1}=w_{5}$
$\mathrm{g}_{1}\left(\mathrm{w}_{1}\right)=\sigma\left(\mathrm{h}_{1}\right)=\sigma\left(\mathrm{w}_{1}{ }^{*} \mathrm{x}_{1}+\mathrm{w}_{2}{ }^{*} \mathrm{x}_{2}+\mathrm{b}_{1}\right) \rightarrow \quad \partial \mathrm{g}_{1} / \partial \mathrm{w}_{1}=\mathrm{g}_{1}{ }^{*}\left(1-\mathrm{g}_{1}\right)^{*} \mathrm{x}_{1}$
$\sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))$
sigmoid derivative

Backward phase:

5. hidden-to-output weight updates

Computing delta for w_{1}
$\partial E / \partial w_{1}=\partial E / \partial y^{*} \partial y / \partial g_{1}{ }^{*} \partial g_{1} / \partial w_{1}$
$\Delta=\partial E / \partial w_{1}=(y-t) * w_{5}{ }^{*} g_{1}{ }^{*}\left(1-g_{1}\right) * x_{1}$
$w_{1}=w_{1}-\eta \Delta$

Step-by-step example
 5. hidden-to-output weight update for w_{1}

$h_{1}=1.4$
$h_{2}=2.4$
$\mathrm{g}_{1}=0.80$
$\mathrm{g}_{2}=0.91$
$y=1.45$

Update $\mathbf{w}_{1} u$ sing $\boldsymbol{\eta}=0.1$:
$w_{1}=0.1-0.1 * 0.108=0.0892$

Quiz 10. Backpropagation

- Use the same network as in the step-by-step example and the same initial parameters to compute new value for w_{2} during one backpropagation step.
- Demonstrate your understanding by providing as many details as possible.

Role of nonlinearity

- Somewhere inside the hidden layer we must have a mechanism which will ignore some correlations
- Otherwise the network will serve as a basic linear separator and be no better than a single-layer perceptron

Experiment with multi-layer-perceptron here

Multi-layer perceptron: vanilla (basic) neural networks

Normal computing

Computing with MLP

Inputs
Hidden layer
1
Hidden layer
2
Outputs

What do we gain from the extra layers

1st layer draws linear boundaries

2nd layer combines the boundaries

3rd layer can generate arbitrarily complex boundaries

Very powerful model

- With sigmoidal activation function we can show that a 3layer net can approximate any function to arbitrary accuracy: property of Universal Approximation
- Proof by thinking of superposition of sigmoids
- Not practically useful as we might need arbitrarily large number of neurons - more of an existence proof
- Same is true for a 2-layer net providing function is continuous and from one finite dimensional space to another

Universal Approximation Theorem

For any given constant ε and continuous function $h\left(x_{1}, \ldots, x_{m}\right)$, there exists a three layer ANN with the property that

$$
\left|h\left(x_{1}, \ldots, x_{m}\right)-H\left(x_{1}, \ldots, x_{m}\right)\right|<\varepsilon
$$

where $H\left(x_{1}, \ldots, x_{m}\right)=\sum{ }_{i=1} a_{i} f\left(\sum_{j=1}^{m} w_{i j} x_{j}+b_{i}\right)$

Applications of ANNs

- Credit card frauds
- Kinect - gesture recognition
- Facial recognition
- Self-driving cars
...

Example: breast cancer diagnosis

- Dataset: https://archive.ics.uci.edu/ml/data sets/Breast+Cancer+Wisconsin+(Di agnostic)
- Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass
- Diagnosing breast cancer from mammograms is a very hard non-
 trivial task

Run and see how MLP learns to diagnose breast cancer

Make computers as capable as humans?

Brain is a highly complex, non-linear, massively-parallel system

- Response of integrated response circuit:

1 nanosecond $=10^{-9} \mathrm{sec}$

- Response of neuron:

1 millisecond $=10^{-3} \mathrm{sec}$

The only advantage of the brain: massively parallel 10 billion neurons with 60 trillions of connections working together

Artificial neural network is an abstract idea - media-independent

- To simulate the brain we could theoretically construct thousands of circuits working in parallel
- We can simulate them using a program that is executed on a conventional serial processor
- The solutions are theoretically equivalent
- We can simulate the neural behavior by a virtual machine which is functionally identical to a real machine that currently is prohibitively complex and expensive to build

Example:
 Multi-class classification

- In multiclass classification, the output label can be one of the C classes: $y=\{1, \ldots, C\}$
- To do this, we can have C output neurons in the output layer: one output neuron for each class
- The model then returns not a label but a score (0...1) that can be interpreted as the probability that the instance belongs to each of C classes
- Then we choose the class with the highest probability as the solution to the classification problem

We will try a multi-class classification with keras library on MNIST dataset

| 2 | 2 | 0 | 1 | 7 | 6 | 4 | 0 | MNIST Dataset: collection of handwritten digits from |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 6 | 2 | 0 | 3 | 1 | 0 | 0 |
| 3 | 5 | 2 | 8 | 5 | 7 | 0 | 6 | 0 to 9 |

Each black-and-white image is represented by a 28×28 matrix of pixel values

We flatten it into a feature vector of size $28 \times 28=784$

We need a new activation function for multi-class classification

- We could train the network with a sigmoid activation function applied to the output layer and simply declare that the highest output probability is the most likely
- However, there is a problem with this approach: sigmoid does not reflect the idea that "The more likely is one label, the less likely is any of the other labels"

Why not sigmoid: 1/3

Raw output
Consider the raw prediction obtained for digit 9 This is a "perfect" classification

If we apply sigmoid we get:

Suddenly we are not 100\% sure anymore

Why not sigmoid: 2/3

Sigmoid function would lead to a situation when perfectly classified instance will create a large Mean Square Error:

$E=1 / 2(y-t)^{2}$

- The weights will be updated - even though the prediction was perfect!
- This happens because sigmoid does not take into account relationship between possible outputs
- For sigmoid to reach 0 error, it doesn't just have to predict the highest positive number for the true output, but it has to predict 0 everywhere else (which is very unlikely)

Why not sigmoid: 3/3

- So for the previous example, the sigmoid would update weights until all the errors are 0 except for 9
- To do this it will penalize all the pixels combinations that simultaneously occur in several numbers
- For example, if it detects the curved region for 2, and only 2, then when it sees 3 , it will reject it based on this curve

We want a smooth probability distribution for a given image: each image is classified as all classes with different probabilities

All these probabilities must sum up to 1.0

Softmax activation function

The softmax is computed on the whole output layer:

1. Raise each value exponentially: each x is transformed into e^{x}

All the zeros turned into ones, and 100 turned into $\mathrm{e}^{100} \approx 2.668^{*} 10^{43}$
2. Sum up the values for all the nodes in the layer, and divide each value in the layer by that sum

This effectively will make every number 0 except for the value for label 9

This turns every prediction into a positive number: negative numbers turn into very small positive numbers and big positive numbers turn into very big numbers.

Advantages of softmax for multiclass classification

- Softmax takes into account all the classes at the same time: the higher the network predicts one value, the lower it predicts all the others
- It also increases the differences (sharpness of attenuation): it encourages the network to predict one output with very high probability If you want to adjust how aggressively it does this - use numbers slightly higher or lower than "e
- Softmax probabilities always sum to 1.0: We can interpret any individual prediction as a global probability that the prediction has a particular class label

Experiment with keras library and handwritten digit recognition in handwriting_classification
https://github.com/mgbarsky/labs ml img classification/blo b/main/handwriting classification.ipynb

